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Two issues in plasma-filled diodes are addressed: electrostatic transient effects during the rise time 
of the current, and current neutralization in the bulk of the plasma. For the first issue an analytical 
method is used to recover some features of the diode behavior recently demonstrated in simulations 
[Phys. Fluids B 4, 3608 (1992)]. The potential and the electron flow are shown to be oscillatory at 
the initial phase of current rise, before ions start to move. The possibility of electron trapping in the 
potential hill is discussed. For the second issue an equilibrium is constructed that describes a plasma 
of dimensions larger than the electron skin depth. A beam of charged particles moves ballistically 
into the plasma and the plasma electrons generate a return current that neutralizes the beam current. 
When the plasma electrons reach the plasma boundary they bend into a skin layer and conduct the 
current along the plasma boundary. 0 1995 American Institute of Phyks. 

1. INTRODUCTION 

The complicated behavior of current conduction in 
plasma-filled diodes (PFD) that is reflected in numerical 
simulations1-4 results from the simultaneous presence of sev- 
eral phenomena. Examples are the formation of space- 
charge-limited flows, plasma oscillations, electron trapping, 
potential hill formation, ion erosion, electron beam-plasma 
interaction, current neutralization, and the establishment of 
plasma diamagnetism. In order to better understand the phys- 
ics of the plasma-filled diode, we focus on two issues and 
describe them analytically. We believe that it is useful to 
relate detailed numerical simulations to simple analytical 
pictures. 

Both issues dealt with in this paper are concerned with 
the early stage of the current conduction, when ions are still 
immobile. The first issue is the time-dependent electrostatic 
evolution of the electron current at the low impedance phase. 
We develop an analytic model to describe the time- 
dependent electron dynamics. The formalism is similar to 
Lagrangian formalisms that were employed to study nonlin- 
ear plasma oscillations in other systems.5*6 The calculated 
electron velocity and density, and the electric potential are 
shown to be spatially and temporally oscillatory. Similar 
plasma oscillations were recently demonstrated in numerical 
simulations.’ The oscillations are of interest, since it has 
been suggested that they lead to the formation of a large 
potential hill in the plasma. When electron trajectories cross 
each other our analytical method cannot be used. Particle 
reflection and trapping are therefore not described here. We 
identify, however, conditions for the occurrence of particle 
reflection. 

The second issue is the neutralization of the electron 
beam current by the plasma electrons. During the current 
conduction high-energy electrons that are emitted from the 
cathode cross the plasma. It is not clear whether the diode 
current is conducted by these beam electrons or whether the 
plasma electrons generate a return current that neutralizes the 
beam current. In the latter case the diode current is con- 
ducted by a diamagnetic current in a skin layer along the 
plasma boundary. We present an analytic description of a 

steady-state current conduction in the plasma. An electron 
beam moves ballistically into the plasma. The plasma elec- 
trons move in a direction opposite to the beam electrons so 
that the net current in the bulk of the plasma is zero. When 
the plasma electrons reach the plasma boundary they bend 
into a skin layer, carrying the current along the plasma 
boundary. The plasma electron flow, the electric potential, 
and the magnetic field are calculated self-consistently, under 
the assumption that the electron skin depth is much smaller 
than the plasma dimensions and that the beam density is 
much smaller than the plasma density. Further study is re- 
quired to find out which dynamic evolution of the diode 
results in such a steady state. 

In Sec. Ii we describe the mode1 for plasma oscillations. 
In Sec. III we give numerical examples and compare our 
results with the results in Ref. 1. In Sec. IV we describe the 
equations for the steady state and in Sec. V we give an ex- 
ample. 

ii. PLASMA OSCILLATIONS 

In this section we describe a PFD by a time-dependent 
one-dimensional (1 -D) electrostatic model. We assume that 
the time is so short that the ions do not respond and are 
immobile. Therefore, there is no plasma erosion or gap for- 
mation. The current is carried by the plasma electrons, which 
are evacuated toward the anode and by the electrons emitted 
from the cathode. We neglect magnetic forces due to both 
external and self-fields. The dynamics of the electrons is, 
therefore, determined by 

du 
e E. dt=-m 

In our 1-D geometry u is the velocity in the x direction 
normal to the electrodes, E is the electric field in the x di- 
rection, and -e and wr are the electron charge and mass. 

Using Gauss’ law, we observe that the electric field that 
acts on the electron along its orbit satisfies 

dE 
dt=-4~~,(t)+4~Zeni[x(t)]U. (2) 
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This is a key equation that enables us to pursue this analysis. 
The change in time of the electric field is determined by the 
change of the net charge between the cathode and the par- 
ticle. The change in time of the net charge is a result of the 
current at the cathode and the ion charge that the electron 
crosses. 

In writing EXq. (2) we also used the assumption that the 
electric tield at the cathode does not change in time, and we 
explicitly assume that E = 0 at the cathode. A space-charge- 
limited flow is established once the electric field at the cath- 
ode is large enough to generate a dense cathode plasma. The 
instantaneous vanishing of E at the cathode follows the as- 
sumption that the space-charge-limited Row is instanta- 
neously formed. The dynamics might be somewhat different 
had we taken into account the evolution toward a space- 
charge-Iimited flow. However, the same assumption of an 
instantaneous formation of a space-charge-limited flow was 
also made in the simulations.’ An accompanying result of the 
instantaneous formation of a space-charge-limited flow is 
that the cathode current equals the circuit current. 

An important requirement for the validity of Eq. (2) is 
that there are no trajectory crossings of the electrons. As we 
mentioned above, we assume that the plasma electrons move 
ahead of the emitted electrons. Also, there are no crossings of 
trajectories between the emitted electrons. The second pic- 
ture, presented in Sec. IV, is very different. There the beam 
electrons move across the plasma electrons, which are not 
evacuated. No attempt is being made here to reconcile these 
two pictures. In the first picture, described in this section, we 
make the same assumptions made in the simulations.’ There- 
fore, the results of our analytical model could help in under- 
standing the results of the simulations. The relevance of both 
the simulations and the analytical model to experiments de- 
pends to a large extent on the validity of the above- 
mentioned assumptions common to both. 

Combining Eqs. (1) and (2), we obtain 

$= T [j&)1- T zni[x(t),v. 
The nature of the electron dynamics is a result of Eq. (3). 
The cathode current accelerates the electrons but the ion 
charge provides a restoring force that generates oscillations 
with the plasma frequency. The presence of the positive ion 
background makes the dynamics of the beam electrons dif- 
ferent from that described by the Child-Langmuir law. 

Equivalently to Eq. (3), we may write 

g= % /j&)1 - $ z g /;(r)ni(xjdx, (4) 

which is integrated to 

47re2 
dt’lj&‘)l-,Z ni(x)dX. (5) 

We denote by ti the time at which the electron enters the 
diode. We used the condition E(x = 0~) = 0 in deriving EQ. 
(5). The electron accelerates due to the accumulated charge: 
electron charge through the cathode current and ion charge 
due to the electron motion. 

Phys. Plasmas, Vol. 2, No. 4, April 1995 

We now assume for simplicity that the ion density is 
uniform, 

ni(X)=niO. (6) 

Equation (3) takes the form 

d2v 
-$+W;U=O;U&), 

where 

2_ 4%Wioi?” WC- P z m 

and 

(8) 

(9) 

Equation (‘7)~ describes an harmonic oscillator driven by the 
external “force,” the cathode current. The solution of this 
equation that satisfies the conditions 

V(ti)= 2 (ti)=O, 

is 

I 

t 
v(t,t[)=Op dt’ u,(t’)sin w,(t-t’). 

rti 

Similarly, Eq. (5) becomes 

d2x 
~~~~X=~~[Xc(t)-J,(ti)], 

where 

x,(t)= 
I 

‘dt’ v,(t’), 
0 

and thus 

X(t,ti)=Wp 
I 

:dr’[x,(t’)-x,(s)]sin o,(t-r’). 
I 

Using Eq. (l), the electric field is found to be 

E(t,ti)=-5 Wi 
I 

t 
dt’ v,(t’)cos o,(t-r’). 

ti 

We may write also an expression for the potential: 

cp(x,t) = - 
J 
;dx’ E(x’,t) 

I 
ti(X,t) =- 

t 
dt; $ E[x’(t,t;),t]. 

L 

From Eq. (14), we find that 

dt’ 
axc(ti) 7 sin o,(t-t’), 

1 

and therefore 
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(15) 

(161 

1297 
Downloaded 08 Apr 2005 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



dX 
t 

‘I-=-Vc(ti)COS Wp(t-t’) 
I f, 

=-VU,.(ti)[l-COS wP(t-ti)]. (17) 

From Eq. (17) it is clear that as long as u, is positive, dX/rlti 

cannot be positive and therefore there are no trajectory cross- 
ings. Swanekamp et al.’ have obtained trajectory crossings 
and particle reflections in their simulations, followed by par- 
ticle trapping and building of a potential hill. It is important 
to compare in detail the simulations and the analysis and to 
find out the cause of the difference in the results, 

If the voltage is specified the above equations may be 
formulated as a set of integral equations, similar to the way 
the Fierce diode problem is formulated.6 For simplicity, we 
restrict ourselves to the low impedance phase of the PFD. At 
this phase the circuit current is determined by the external 
circuit. As we mentioned above, the cathode current j,(t) 
equals the circuit current. We assume, therefore, that the 
cathode current is specified and solve for the potential distri- 
bution, and for the density and velocity of the electron fluid. 
We choose the current to rise linearly in time and to be of the 
form 

u,.(t)=v()t/r, (18) 

similar to the form studied by Swanekamp et al.’ It follows 
that 

x,(t) = V”A2 7. (19) 

From Eqs. (11) and (14). we obtain that the electron velocity 
and location are 

U(t,tj)= y t-ti COS Wp(t-ii)- 
i 

sin OJp( t - ti) 
WI, 1 (201 

and 

sin cop(t-ti) 

+ $ [COS Wp(t-ti)- 1] . 
1 

(21) 

The electric field is found to be 

mw; 
E(t,ti)= - - er uo 

I 
rdt’ t’ cos wp(t-t’) 

li 

mu0 =-- --g [wpti sin o,(t-ti)t 1 

-cos wp(t-t’)]. (22) 

Using Eqs. (15), (21), and (22), we find that the potential is 

s 
II 

dt; 
f 

t;[ 1 --OS w,(t-t,:)] 

X[w,tj sin ~,(t-tj)+ 1-cos w,(t--ti)]. 
(23) 

Performing the integration, we find that 
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ecp -2 
i %(  G$E=~ 4 ~pti)*-tWpt)*] 

+4w,t; sin W,(t--i)- y COS w,(t-tti) 

+3 ~+~COS2~,lt-ti)-~(~~t)2+(Wpti)2 

xcos O,,(t-ti)+(Wpf~)~ 
COS 2Wp(t-ti) 

4 i . (24) 

The periodic potential and flow are expected to be only tran- 
sient. Ion motion and the self-magnetic field will cause tra- 
jectory crossings and eventually the disappearance of the os- 
cillations. The simulations do indeed show how later 
trajectory crossings destroy the periodic structure of the po- 
tential and the flow. Since the oscillation period is very short, 
on the order of 06 r, it is difficult to detect the oscillations 
experimentally. Yet they are important because they may af- 
fect the later evolution of the diode. 

Ill. PLASMA OSCILLATIONS-NUMERICAL 
EXAMPLES 

We turn now to several numerical examples. We assume 
that 

niO= IO’* cmM3, 

&)=3.1x IO9 cm/s, (251 

7= 1o-y s, 
and that the plasma is composed of Ccc. Therefore, 

2=2 
and 

wp=7.9x lOi@ s-‘. (26) 

In Figs. l(a)- l(c) the electron velocity is shown as a 
function of x [found from Eqs. (20) and (21)] and in Figs. 
2(a)-2(c), the electrostatic potential is shown as a function 
of x [found from Eqs. (21) and (24)]. When the figures are 
compared to the figures in Ref. 1, it is seen that at t= 1 ns the 
results are very similar. At the later times the results are 
different. The electron trajectories that we find do not cross 
each other, and therefore both velocity and potential exhibit 
an oscillatory structure. In the simulations’ electron trajecto- 
ries cross and at these later times the structure ceases being 
oscillatory. 

IV. STEADY STATE 

Contrary to the I-D time-dependent model of the previ- 
ous section, in this section we consider a two-dimensional 
(2-D) stationary picture. Magnetic fields are taken into ac- 
count here. The analysis is somewhat standard, but we feel 
that the application to the description of the flow in the PFD 
configuration is useful, We assume that a beam of charged 
particles of a density tib and velocity vb moves ballistically 
into a plasma of a density n. The equations that govern the 
dynamics of the plasma electrons are the continuity equation, 

Fruchtman, Benari, and Blaugrund 

Downloaded 08 Apr 2005 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



6 

4 

2 

0 0 0.5 1 1.5 

v(cm/ns) 10 

\ 
5 

L-l--l-,-l-l- 
.5 2 

x(cm) x(cm) 

FIG. 1. The electron velocity versus the distance from the cathode at (a) 
t= 1 ns, (b) t=2 as, and (c) t=3 ns. The cathode current is given by Eq. 
(18) and the parameters are given in Eqs. (25) and (26). 

xkm) 

Combining Eqs. (28) and (30), we obtain that 
07) 

(33) & ti=Vx(vxaj, and the equation of motion, 

where 
(28) 

(34) Here n and v are the electron density and velocity, E and B 
are the electric and the magnetic fields, c is the velocity of 
light in vacuum, and the generalized vorticity, is frozen into the electron fluid. 

We now restrict ourselves to a 2-D geometry, in which 

o.~e^~o(x,y); B=&B(x,y); $0. 

Equations (27), (33), and (35) yield 

(35) 
is the convective derivative. The fields are governed by Fara- 
day’s law, 

(36) 

by Ampere’s law, We further assume that the external current has been estab- 
lished and that the plasma currents have been induced, so 
that the displacement current is neglected. Therefore 

V-nv=O, 

and we define streamfunctions I and ?I!, so that 

(37) 

1dE 4~ ---- 
cdt c 

e(nv+n~v,)=VxB, (31) 

and by Gauss’ law, 
V.E=4m(ni-n-q,). 02) 
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FIG. 2. The electrostatic potential versus the distance from the cathode at 
(a) I= 1 ns, (b) r=2 ns, and (c) t = 3 ns. The cathode current and the 
parameters are as in Fig. 1. 
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4ne2 ( ! ,,2 nv= i?,xv?P. 

(38) 

(39) 

Let us examine steady-state solutions. Equations (36) 
and (39) yield 

v*xv 3 =o. i 1 
The ratio of generalized vorticity to density has to be con- 
stant along the streamlines. The general solution of Eq. (40) 
is 

where F is an arbitrary function. Using Eqs. (38) and (39), 
and neglecting the displacement current, we write Eq (3 1) as 

*+I= g. 

Equation (41) becomes 

(42) 

-?lr--I=nF(T). (431 

Here 

ii=nnlno, 

where no is a characteristic plasma density and 

(44 

2 4nxoe2 
wz- P 171 ’ (45) 

is the square of the characteristic plasma frequency. 
Let us examine a plasma that is initially at rest and un- 

magnetized. The initial generalized vorticity is therefore 
zero, 

o=o. (461 

We examine solutions in which w remains zero. Thus 

-W-I=0 (47) 

is the governing equation. We now assume that the beam is 
not magnetized and propagates in the x direction only. There- 
fore 
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FIG. 3. A  steady current conduction by a plasma located between two electrodes, where x is normalized to 1, y,/Z=O.5, and clw,l=O.O5. Shown are the 
contour lines of (a) the beam streamfunction, given in Eq. (73), (b) the plasma streamfunction, (c) the magnetic field, and (d) the electrostatic potential. 
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FIG. 4. A schematic of the electrostatic potential versus x ar yf 0 when (a) 
the two electrodes arc grounded, and (b) there is a nonzero voltage between 
the electrodes. 

I=Z(y). (48) 

On the other hand, we look for solutions in which the plasma 
is bounded in the x direction. Therefore 

rz=n(x); d,d 
c?x ay 

Equation (47) becomes 
c2 1 fP-9 a! d 1 
-IT- 1 wp n 8x 

-2+x- ;I i iI -w-I=O. 

Equations (50) and (42) are combined to 

or 

Let us express the magnetic field as 

B(x,y)= ,F r(yMx), i -1 
and therefore 

(49) 

(501 

(51) 

(52) 

B=O 

(p-0 B=B, 
K 

FIG. 5. A schematic of the contour lines of the electrostatic potential in an 
unmagnetized plasma surrounded by a vacuum that is permeated by the 
magnetic field. 

Wx,y)=l(y)[b(x)- 11. (54) 
Since in a steady state 

E=-Vq5, (55) 
we multiply the time-dependent equation (28) by v, and ob- 
tain 

(W 

which expresses the conservation of the total energy along 
the electron trajectory. Using (39) we obtain a formal equa- 
tion for the electrostatic potential, 

(57) 

where G is an arbitrary .function. Since initially c#J=O=V, we 
choose G( V!) = 0 and 

(5% 

We discuss two cases: a uniform plasma density and a non- 
uniform plasma density, and the issue of quasineutrality. 

A. Urtiform plasma density 

Let us now choose a uniform density plasma, 

ri=l. (59) 
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We assume that the plasma is bounded at x= 0 and at x= I, 
so that 

b(x=O,y-)= 1 =b(x=Z,y). (60) 

The solution of Eq. (52) with the boundary conditions (60) is 

B(x,yj~ 7 Z(y) exp - 7 lnc [ ( -px)+exp( ++)]. 

We assumed that 
(61) 

The streamfunction is 

TI!(x,y)=Z(y) exp --c +exp - 7 (Z-X) -1 . [ ( wpxi i wp 1 1 
(63) 

Therefore, the velocity of the plasma electrons is 

nX=-$$[exp( -F)+exp( -?(l-r))-11, 

(644 

o,,=-tI(y)[exp( -y)-exp( -T(l-Sx))]. 

i@b) and 
The electrostatic potential is approximately cp(-GY)=4k-Y). 

A second configuration that our description is relevant to, is 
of a hollow cylindrical plasma, in which the plasma radial 
dimension is much smaller than the radius of the plasma. In 
this case 

(65) 

B. Nonuniform plasma density 

Let us now assume that near the plasma boundary the 
density is 

n=xlx”. W) 
Solving Eq. (52), we find that 

(67) 

where Ai is the Airy function. The thickness of the current 
layer, 

e (68) 

is the location where 

c 2 qmc’ 
E 

o;(x) 4rrnoxe” 

is equal to x2. 

(6% 

C. Quasineutrality 

We require that 

V-E 
-91. 
47i-noe 

For that, 

4 
(c2/o~)4nnoe 41, (71) 

or using Eq. (65), we obtain the standard condition, 

w,--Jp 9 (72) 

where o, is the electron cyclotron frequency. 

V. STEADY STATE-AN EXAMPLE 

We specify the streamfunction of the beam current to be 

03) 
for y ‘>O. The steady state we write here is extended to y=~0 
in two different ways to describe two different configura- 
tions. The first configuration is of a rectangular plasma col- 
umn that is much longer in the z direction than in the x and 
y direction. The plane y=O is a symmetry plane. In this 
configuration, 

I(y)= --Ii--Y), 

B(x,yj= -q-G -.Y>, 

I(yGO)=O, B(x,yGO)=O, i73 
and 

qqx,yGO)=O. 

For the example we chose a plasma of a uniform density, 
with the parameters 

y()/z=o.5 

and 

&=0.05. (76j 
P 

Figure 3(a) shows the beam streamfunction I(y). Figure 
3(b) shows the contour lines of the plasma streamfunction 
q(x,y). Figure 3(c) shows the contour lines of the magnetic 
field, the lines along which the current flows. Figure 3(d) 
shows the contour lines of the electrostatic potential @(x,y). 
The quantities in the figures are given by Eqs. (73), (63), 
(61), and (65). At the plasma boundaries in the y direction, 
and in the vacuum outside the plasma, the contour levels are 
drawn only schematicahy. Figures 4(a) and 4(b) are schemat- 
ics of the potential +(x,yt), where yi #O. In Fig. 4(a) the 
electrodes are grounded, while in Fig. 4(b), &A) # 4,(K). In 
contrast to the PFD, Fig. 5 describes a simpler configuration. 
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It shows a schematic of the contour lines of &x,y) when an 
unmagnetized plasma is surrounded by a vacuum permeated 
by the magnetic field. 

VI. SUMMARY 

Here we have presented two pictures of current conduc- 
tion through a plasma. The first picture was of nonlinear 
plasma oscillations. Less simplified analysis should show the 
result of various effects not included in our model. We hope 
that the study of trajectory crossings, particle trapping, and 
potential hill formation will benefit from our simple analysis. 
The second picture was of a steady 2-D current flow. In this 
picture a plasma return current neutralizes the external cur- 
rent. It would be interesting to see if a time-dependent evo- 
lution actually results in the stationary picture we have pre- 
sented. Numerical simulations explore the role of ion motion 

and of various instabilities. For understanding the complex 
pictures seen in simulations, simple pictures such as those 
presented here, could be helpful. 
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