On the conduction of a current in a plasma-filled diode
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Two issues in plasma-filled diodes are addressed: electrostatic transient effects during the rise time
of the current, and current neutralization in the bulk of the plasma. For the first issue an analytical
method is used to recover some features of the diode behavior recently demonstrated in simulations
[Phys. Fluids B 4, 3608 (1992)]. The potential and the electron flow are shown to be oscillatory at
the initial phase of current rise, before ions start to move. The possibility of electron trapping in the
potential hill is discussed. For the second issue an equilibrium is constructed that describes a plasma
of dimensions larger than the electron skin depth. A beam of charged particles moves ballistically
into the plasma and the plasma electrons generate a return current that neutralizes the beam current.
When the plasma electrons reach the plasma boundary they bend into a skin layer and conduct the
current along the plasma boundary. © 1995 American Institute of Physics.

L. INTRODUCTION

The complicated behavior of current conduction in
plasma-filled diodes (PFD) that is reflected in numerical
simulations' ™ results from the simultaneous presence of sev-
eral phenomena. Examples are the formation of space-
charge-limited flows, plasma oscillations, electron trapping,
potential hill formation, ion erosion, electron beam—plasma
interaction, current neutralization, and the establishment of
plasma diamagnetism. In order to beiter understand the phys-
ics of the plasma-filled diode, we focus on two issues and
describe them analytically. We believe that it is useful to
relate detailed numerical simulations to simple analytical
pictures.

Both issues dealt with in this paper are concerned with
the early stage of the current conduction, when ions are still
immobile. The first issue is the time-dependent electrostatic
evolution of the electron current at the low impedance phase.
We develop an analytic model to describe the time-
dependent electron dynamics. The formalism is similar to
Lagrangian formalisms that were employed to study nonlin-
ear plasma oscillations in other systems.>® The calculated
electron velocity and density, and the electric potential are
shown to be spatially and temporally oscillatory. Similar
plasma oscillations were recently demonstrated in numerical
simulations.! The oscillations are of interest, since it has
been suggested that they lead to the formation of a large
potential hill in the plasma. When electron trajectories cross
each other our analytical method cannot be used. Particle
reflection and trapping are therefore not described here. We
identify, however, conditions for the occurrence of particle
reflection. :

The second issue is the neutralization of the electron
beam current by the plasma electrons. During the current
conduction high-energy electrons that are emitted from the
cathode cross the plasma. It is not clear whether the diode
current is conducted by these beam electrons or whether the
plasma electrons generate a return current that neutralizes the
beam current. In the latter case the diode current is con-
ducted by a diamagnetic current in a skin layer along the
plasma boundary. We present an analytic description of a
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steady-state current conduction in the plasma. An electron
beam moves ballistically into the plasma. The plasma elec-
trons move in a direction opposite to the beam electrons so
that the net current in the bulk of the plasma is zero. When
the plasma electrons reach the plasma boundary they bend
into a skin layer, carrying the current along the plasma
boundary. The plasma electron flow, the electric potential,
and the magnetic field are calculated self-consistently, under
the assumption that the electron skin depth is much smaller
than the plasma dimensions and that the beam density is
much smaller than the plasma density. Further study is re-
quired to find out which dynamic evolution of the diode
results in such a steady state.

In Sec. II we describe the model for plasma oscillations.
In Sec. IIl we give numerical examples and compare our
results with the results in Ref. 1. In Sec. IV we describe the
equations for the steady state and in Sec. V we give an ex-
ample.

ll. PLASMA OSCILLATIONS

In this section we describe a PFD by a time-dependent
one-dimensional (1-D) electrostatic model. We assume that
the time is so short that the ions do not respond and are
immobile. Therefore, there is no plasma erosion or gap for-
mation. The current is carried by the plasma electrons, which
are evacuated toward the anode and by the electrons emitted
from the cathode. We neglect magnetic forces due to both
external and self-fields, The dynamics of the electrons is,
therefore, determined by

—=——E, (1)

In our I-D geometry v is the velocity in the x direction
normal to the electrodes, E is the electric field in the x di-
rection, and —e and m are the electron charge and mass.

Using Gauss’ law, we observe that the electric field that
acts on the electron along its orbit satisfies

dE
W=~-477-j(,(z)—i—477-Zeni[.1t(t)]v. )
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This is a key equation that enables us to pursue this analysis.

Tha Al £ ¢1a Iant e
The change in time of the electric field is determined by the

change of the net charge between the cathode and the par-
ticle. The change in time of the net charge is a result of the
current at the cathode and the ion charge that the electron
Crosses.

In writing Eq. (2) we also used the assumption that the
electric field at the cathode does not change in time, and we
explicitly assume that E=0 at the cathode. A space-charge-
limited flow is established once the electric field at the cath-
ode is large enough to generate a dense cathode plasma. The
instantaneous vanishing of E at the cathode follows the as-
sumption that the space-charge-limited flow is instanta-
neously formed. The dynamics might be somewhat different
had we taken into account the evolution toward a space-
charge-limited flow. However, the same assumption of an
instantaneous formation of a space-charge-limited flow was
also made in the simulations.! An accompanying result of the
instantaneous formation of a space-charge-limited flow is
that the cathode current equals the circuit current.

An important requirement for the validity of Eq. (2) is
that there are no trajectory crossings of the electrons. As we
mentioned above, we assume that the plasma electrons move
ahead of the emitted electrons. Also, there are no crossings of
trajectories between the emitted electrons. The second pic-
ture, presented in Sec. IV, is very different. There the beam
electrons move across the plasma electrons, which are not
evacuated. No attempt is being made here to reconcile these
two pictures. In the first picture, described in this sectlon we
make the same assumptions made in the simulations.! There-
fore, the results of our analytical model could help in under-
standing the results of the simulations. The relevance of both
the simulations and the analytical model to experiments de-
pends to a large extent on the validity of the above-
mentioned assumptions common to both.

Combining Egs. (1) and (2), we obtain

d2
dt

2

47re

—— lie(t -2 Znfx))]o. (3)
The nature of the electron dynamics is a result of Eq. (3).
The cathode current accelerates the electrons but the ion
charge provides a restoring force that generates oscillations
with the plasma frequency. The presence of the positive ion
background makes the dynamics of the beam electrons dif-
ferent from that described by the Child—~Langmuir law.

Equivalently to Eq. (3), we may write

d3x 47re 477e22d x(2)
a5 T Wl — 2

ni(x)dx, )

which is integrated to

dix  dare
dt*  m

2
me

t 4 x(t)
f dt'|j.(t")] - ZJO nf{x)dx. (5)
i
We denote by ¢; the time at which the electron enters the
diode. We used the condition E(x=0,2)=0 in deriving Eq.
(5). The electron accelerates due to the accumulated charge:
electron charge through the cathode current and ion charge
due to the electron motion. ’
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We now assume for simplicity that the ion density is

ni{x)=n;. (6)
Equation (3) takes the form
d*v 2 2
W-l—wpv:wpvc(t), 7
where
4 pe”
2 i0
0= ®
and
FEGIE
o) = 5o ©

Equation (7) describes an harmonic oscillator driven by the
external “force,” the cathode current. The solution of this
equation that satisfies the conditions

dv
v(t;)= ar (t;)=0, _ (10
is
, }
v(t,t,-)=ij dt' v (t')sin wy(t—1t'). (11)
11
Similarly, Eq. (5) becomes
d2
T +w X =W [xc(t) x.(;)], (12)
where
t
xc(t)=f dt’ v (t"), (13)
0
and thus

. x(t,t,-)=wpf:dt’[xc(t')-—xc(tl-)]sin w,(t—1t").  (14)
Using Eq. (1), the electric field is found to be
E(t, t)———a) fdt v (t')cos wy(t—t').
We may write also an expressiqn for the potential:

olx,t)=— J:dx' E(x',t)

. ti(x,t) ax’ .
=_f dt] — E[x'(,t]),t]. (15)
. ot]

From Eq. (14), we find that

dx t 9x (1)
— !
o, wpftidt o, sin w,(1—1'), (16)

and therefore
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X t
a—ti= —v.(t;)cos w,(t—1t")
5

==v (t)[1=cos w,(1—1;)]. (17)

From Eq. (17) it is clear that as long as v, is positive, dx/dt;
cannot be positive and therefore there are no trajectory cross-
ings. Swanekamp et al.' have obtained trajectory crossings
and particle reflections in their simulations, followed by par-
ticle trapping and building of a potential hill. It is important
to compare in detail the simulations and the analysis and to
find out the cause of the difference in the results.

If the voltage is specified the above equations may be
formulated as a set of integral equations, similar to the way
the Pierce diode problem is formulated.® For simplicity, we
restrict ourselves to the low impedance phase of the PFD. At
this phase the circuit current is determined by the external
circuit. As we mentioned above, the cathode current j.(f)
equals the circuit current. We assume, therefore, that the
cathode current is specified and solve for the potential distri-
bution, and for the density and velocity of the electron fluid,
We choose the current to rise linearly in time and to be of the
form

U(.(f)=l)0[/7', (]8)

similar to the form studied by Swanekamp ez al.! It follows
that

xt)=vet /27T (19)

From Eqs. (11) and (14), we obtain that the eleciron velocity
and location are

v sin w,(r—1;)
v(t,ti)=70(t~ti cos w,,(t—ti)——ﬂ(—') (20
P
and
vo ((F=1)) 1,
x(r.t;)=— 3 —w—psm wp(t=1;)
1
+Z)Z[COS w,(t—t;)=1]}. 21
The electric field is found to be
mw; ! I ! !
E(t.t))=~— po Uofridt t' cos w,(t—1t")
muyg R
= [w,t; sin w,(t—1;)+1
—cos w,(t—1")]. (22)
Using Eqgs. (15), (21), and (22), we find that the potential is
mug (nen )
elx,t)=— e ) dt; ti[1—cos w,(r—1])]
X[wyt! sin wy(t—1])+1—cos w,(z~1])].
(23)

Performing the integration, we find that
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e  —2 (3 ( 2 N
mog/2  (w,7)° 7 Lot wpt)’]

33
FAw,t; sin w,(t—t;)— g ©os wp(t=1;)

7 1 5 5 )
+3 §+ 7 cos 2a,(t—1;)— 7 (wpt) +(wpyt;)
co8 2wp(t—t;)

Xcos w,(1=1;)+ (w,1;)? 4

24)
The periodic potential and flow are expected to be only tran-
sient. Jon motion and the self-magnetic field will cause tra-
jectory crossings and eventually the disappearance of the os-
cillations. The simutations do indeed show how later
trajectory crossings destroy the periodic structure of the po-
tential and the flow. Since the oscillation period is very short,
on the order of w, !, it is difficult to detect the oscillations
experimentally. Yet they are important because they may af-
fect the later evolution of the diode.

il PLASMA OSCILLATIONS—NUMERICAL
EXAMPLES

We turn now to several numerical examples, We assume
that

np=10'% cm™3,
ve=3.1X10% cmys, (25)
=107 s,
and that the plasma is composed of C™ ™, Therefore,
Z=2
and
w,=7.9x10' s, (26)

In Figs. I(a)-I(c} the electron velocity is shown as a
function of x [found from Eqs, (20) and (21)] and in Figs.
2(a)~2(c), the electrostatic potential is shown as a function
of x [found from Egs. (21) and (24)]. When the figures are
compared to the figures in Ref. 1, it is seen that at r=1 ns the
results are very similar. At the later times the results are
different. The electron trajeciories that we find do not cross
each other, and therefore both velocity and potential exhibit
an oscillatory structure. In the simulations' electron trajecto-
ries cross and at these later times the structure ceases being
oscillatory.

IV. STEADY STATE

Contrary to the 1-D time-dependent model of the previ-
ous section, in this section we consider a two-dimensional
(2-Dj stationary picture. Magnetic fields are taken into ac-
count here. The analysis is somewhat standard, but we feel
that the application to the description of the Alow in the PFD
configuration is useful. We assume that a beam of charged
particles of a density #, and velocity v, moves ballistically
into a plasma of a density n. The equations that govern the
dynamics of the plasma electrons are the continuity equation,
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and the equation of motion,
d (E+ vXB 08
m 7 v=—¢ ‘ . (28)

Here n and v are the electron density and velocity, E and B
are the electric and the magnetic fields, ¢ is the velocity of
light in vacuum, and

(29)

is the convective derivative. The fields are governed by Fara-
day’s law,

1 6B

—~——=VXE,
c dt v

(30)
by Ampere’s law,
1 dE 4

- + =V xXB
Py - e(nv+nyvy) s

(31)

and by Gauss’ law,
V- -E=4me(n;—n—n,). (32)
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FIG. 1. The electron velocity versus the distance from the cathode at (a)
t=1 ns, (b) £=2 s, and (c) t=3 ns. The cathode current is given by Eq.
(18) and the parameters are given in Egs. {25) and (26).

Combining Egs. (28) and (30), we obtain that

d .
— 0=V X(VvXw),

o (33)
where
e
W=V Xy— — (34)
mc

the generalized vorticity, is frozen into the electron fluid.
We now restrict ourselves to a 2-D geometry, in which

a
B=¢,B(x,y); =0.

w=¢,0(x,y); P (35)
Equations (27), (33), and (35) yield

(e = () 36

di\n| (36)

We further assume that the external current has been estab-
lished and that the plasma currents have been induced, so

that the displacement current is neglected. Therefore
V:nv=0, (37)

and we define streamfunctions / and V¥, so that
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npVp=¢
W ALY z
and
4me? .
m_CT nV—eZXV‘I’. (39)

Let us examine steady-state solutions. Equations (36)
and (39) yield

V¥ xV

w) =0 40
~|=0. (40)
The ratio of generalized vorticity to density has to be con-
stant along the streamlines. The general solution of Eq. (40)
is

@

Py =F(¥), (41)

where F is an arbitrary function. Using Eqgs. (38) and (39),
and neglecting the displacement current, we write Eq. (31) as

eB
V+I= % . (42)
Equation (41) becomes
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FIG. 2. The electrostatic potential versus the distance from the cathode at
(a) t=1 ns, (b} t=2 ns, and (¢) t=3 ns. The cathode current and the
parameters are as in Fig. 1.

2
¢ 11
27 = AV +V¥. V( )}~‘I’——I=nF(‘I’). 43)
4
Here
n=nlny, (44)
where ng is a characteristic plasma density and
47rnge®
L. 0
W= 45)

is the square of the characteristic plasma frequency.

Let us examine a plasma that is initially at rest and un-
magnetized. The initial generalized vorticity is therefore
ZEero,

w=0, (46)

We examine solutions in which w remains zero. Thus

20 1
— ;;A‘I’-!-V‘I'-V(E”—‘I’—I:O @7

@y

is the governing equation. We now assume that the beam is
not magnetized and propagates in the x direction only. There-
fore
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FIG. 3. A steady current conduction by a plasma located between two electrodes, where x is normalized to /, yo/I=0.5, and ¢/w,!=0.05. Shown are the
contour lines of (a) the beam streamfunction, given in Eq. (73), (b) the plasma streamfunction, (c) the magnetic field, and (d) the electrostatic potential.
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FIG. 4. A schematic of the electrostatic potential versus x at y# 0 when (a}
the two electrodes are grounded, and (b) there is a nonzero voltage between
the electrodes.

I=I(y). ‘ (48)
On the other hand, we look for solutions in which the plasma
is bounded in the x direction. Therefore

a9
—>— (49)

n=nl(x); Erigire

Equation (47) becomes
1% ¥ ¢ (1)

A oxT " ox ox \R

c?
- —I=0. (50)

)
Equations (50) and (42) are combined to

¢> ¢ (1aB
;73); —~—I=B (51)
P

n dx

or

—n =0, (52)

cr & (1 63) (1 03)
n dx

i W
Let us express the magnetic field as
me
B(x,y)= = I(y)b(x), (53)

and therefore
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B=B,

$e0 )

FIG. 5. A schematic of the contour lines of the electrostatic potential in an '
unmagnetized plasma surrounded by a vacuum that is permeated by the
magnetic field,

Y, yy=Hy)b(x)—1]. (54)
Since in a steady state
E=~V¢, (55)

we multiply the time-dependent equation (28) by v, and ob- -
tain

muv?
V-V('—z——e¢)=0, } (56)
which expresses the conservation of the total energy along

the electron trajectory. Using (39) we obtain a formal equa-
tion for the electrostatic potential,

m Cz 2
3oz 179i-co=on, o7
14

where G is an arbitrary function. Since initially ¢=0=v, we
choose G{¥)=0 and

m cz‘zv\yz
(b*ﬁ(c?ﬁ)t % (58)

We discuss two cases: a uniform plasma density and a non-
uniform plasma density, and the issue of quasineutrality.

A. Uniform plasma density
Let us now choose a uniform density plasma,

n=1. (59)
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We assume that the plasma is bounded at x=0 and at x=/,
so that

b(x=0,y)=1=b(x=1y). (60)
The solution of Eq. (52) with the boundary conditions (60) is

mc ' wpXx W,
Bx,y)=——I(y)|exp| — ——|+exp| = — (I—x)

(61)
We assumed that
wpl
= >1. (62)

The streamfunction is

—%(l—x))—l}.
(63)

w,x
Y (x,y)=1I1(y)| exp e +exp

Therefore, the velocity of the plasma electrons is

_ ¢ oI wpx + w, ] 1
U= ;gg,; exp - exp| =~ ( X)r ,

(64a)
o ool = 27 exol — 22 1
vy= o, y)|exp - exp p (I—x)]|.
(64b)
The electrostatic potential is approximately
. B¥xy)

B. Nonuniform plasma density

Let us now assume that near the plasma boundary the
density is

n=xlxg. (66)
Solving Eq. (52), we find that
JA. w? \ 113
i P s
™% H‘*—) ] 7

‘where A; is the Airy function. The thickness of the current
layer,

0]

’xoc?. 1/3
(5=(—3— . = (68)
P

is the location where

2 2
c Xgnc

(69)

2 = 2
wp(x_) darngxe

is equal to x*.

C. Quasineutrality
We require that
V-E

4mnge

For that,

<1, (70)
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¢

S S— 71
(c*wy)dmnge 1)

or using Eq. (65), we obtain the standard condition,
0. Lwy, (72)

where w, is the electron cyclotron frequency.

V. STEADY STATE—AN EXAMPLE
We specify the streamfunction of the beam current to be

. Loylyg, y=<yo, ,

1) [ lor vy, (73)
for y=0. The steady state we write here is extended to y=0
in two different ways to describe two different configura-
tions. The first configuration is of a rectangular plasma col-
umn that is much longer in the z direction than in the x and
y direction. The plane y=0 is a symmetry plane. In this
configuration,

I(y)=—=I(—y),

B(x,y)=—B(x,—y),

and.

¢(x5)))= ¢(xa _y)'

A second configuration that our description is relevant to, is
of a hollow cylindrical plasma, in which the plasma radial
dimension is much smaller than the radius of the plasma. In
this case

I{y=0)=0,

(74)

B(x,y<0)=0, (75)
and
&d(x,y=0)=0.

For the example we chose a plasma of a uniform density,
with the parameters

yo/l=0.5
and
C .
w—z=0.05. (76)
P

Figure 3(a) shows the beam streamfunction I(y). Figure
3(b) shows the contour lines of the plasma streamfunction
W (x,y). Figure 3(c) shows the contour lines of the magnetic
field, the lines along which the current flows. Figure 3(d)
shows the contour lines of the electrostatic potential ¢(x,y).
The quantities in the figures are given by Egs. (73), (63),
(61), and (65). At the plasma boundaries in the y direction,
and in the vacuum outside the plasma, the contour levels are
drawn only schematically. Figures 4(a) and 4(b) are schemat-
ics of the potential ¢(x,y,), where y,;#0. In Fig. 4(a) the
electrodes are grounded, while in Fig. 4(b), ¢(A)# ¢(K). In
contrast to the PFD, Fig. 5 describes a simpler configuration.
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It shows a schematic of the contour lines of ¢(x,y) when an
unmagnetized plasma is surrounded by a vacuum permeated
by the magnetic field.

V1. SUMMARY

Here we have presented two pictures of current conduc-
tion through a plasma. The first picture was of nonlinear
plasma oscillations. Less simplified analysis should show the
result of various effects not included in our model. We hope
that the study of trajectory crossings, particle trapping, and
potential hill formation will benefit from our simple analysis.
picture a plasma return current neutralizes the external cur-
rent. It would be interesting to see if a time-dependent evo-
Iution actually results in the stationary picture we have pre-
sented. Numerical simulations explore the role of ion motion
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and of various instabilities. For understanding the complex
pictures seen in simulations, simple pictures such as those
presented here, could be helpful,
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